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ABSTRACT: This work aims at applying an artificial neural network-group contribution method to represent/predict the surface
tension of pure chemical compounds at different temperatures and atmospheric pressure. To propose a comprehensive, reliable, and
predictive tool, about 4700 data belonging to experimental surface tension values of 752 chemical compounds at different
temperatures and atmospheric pressure have been studied. The investigated compounds belong to 78 chemical families containing
151 functional groups (group contributions), which include organic and inorganic liquids. Using this dedicated strategy, we obtain
satisfactory results quantified by the following statistical parameters: absolute average deviations of the represented/predicted
properties from existing experimental values, 1.7 %, and squared correlation coefficient, 0.997.

1. INTRODUCTION

Effects of different physical forces on fluid phase equilibria
have generated number of discussions in the past century.1

Surface tension is among these forces, which exists at the inter-
face of fluid phases.1�3 There are unequal asymmetric forces
acting upon amolecule, which are zero at equilibrium.4 At low gas
densities, the molecules experience a sidewise and toward the
bulk liquid, meanwhile they are attracted a little in the direction
of the bulk gas. These attractive forces tend to pull the surface
toward the bulk liquid phase. Therefore, the surface layer is in
tension, and at equilibrium, it minimizes its area, which depends
on the mass of material, container restraints, and external
forces.3,4 As a matter of fact, accurate determination of the
tension at the surface of a liquid is significant for investigation
of intermolecular forces.4

This molecular tension at the surface is quantitatively ex-
pressed as surface (interfacial) tension, which refers to the force
exerted at the interface per unit length.2 Surface forces affect the
onset of formation of new phases and are significant in multi-
phase flow especially in hydrocarbon reservoirs during produc-
tion and in pipelines during transportation.2

One of the applications of this property is to determine the
capillary pressure, which is used to investigate the effects of
surface forces on fluid distribution within a reservoir.2 Further-
more, the relative permeability of the fluids that is a significant
factor for describing the fluids flow and phase behavior (in a
dynamic way) in the hydrocarbon reservoirs is related to the
interfacial tension.2 Of particular interest are the effects of
the values of interfacial tensions of the gas condensates on the
condensate recovery in the case of retrograde condensation in
gas condensate reservoirs.2

Regarding the preceding significance of surface tension prop-
erty, several calculation/estimation methods have been so far

proposed for this purpose. In 1923, Macleod5 presented an
empirical equation to correlate the experimental values of surface
tension based on the density difference between the liquid and
vapor of a chemical compound in equilibrium with each other at a
given temperature and a constant characteristic of the liquid phase.
Later, Sugden6,7 reported the constant characteristic of the
Macleod’s correlation5 to be a function of molecular weight and
another parameter of a compound called the “parachor” as follows:

σð1=4Þ ¼ ðPÞðFL � FVÞ=M ð1Þ
whereσ is the surface tension in (dyn/cm), P denotes the parachor
parameter, F is the density in (g/cm3),M is the molecular weight,
and subscripts L and V refer to the liquid and vapor phases,
respectively. Balasubrahmanyam1 stated that parachor is a number
that represents the molar volume of a compound when the
temperature is such that its surface tension is unity.1 In other
words, the parachor parameter has been related to the critical
volume of a substance has been related to the critical volume.
Therefore, there are unique values of this parameter for each
chemical compound.2 Bayliss8 has calculated the parachor values
by fitting the experimental data of n-paraffins parachors using the
least-squares method. A correlation based onmolecular weight has
been presented by Schechter andGuo9 and Baker and Swendloff10

for the evaluation of the parachors of n-paraffins.
However, the parachor parameter can be related to the critical

temperature and molar volume of compounds as follows:11

P ¼ 0:324T1=4
c ν7=8c ð2Þ

where T is temperature in K, v is molar volume in m3/kmol, and
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subscript c denotes the critical value. Another approach has been
presented by Quayle,12 who reported group contributions for
calculation of parachor parameters. However, the reported group
contributions are incomplete andmany functional groups are not
represented; that is, the model is not applied to many chemical
compounds.3

Although the method suggested by Macleod,5 which relates
the surface tension to the densities has some drawbacks, several
authors have used this approach to evaluate the surface tensions
of various compounds13�19 mainly due to its simplicity. The
main disadvantages of applying this relation are as follows:
1. The values of the parachors are not always available

experimentally and estimation techniques have not been
developed for many chemical families,

2 The absolute average deviations (AAD) of the calculated/
estimated surface tensions of different substances from
experimental data are too large for complex chemical
structures.3,4 The obtained results for different kinds of
chemical compounds3 show 8.6 % absolute average devia-
tion from experimental values.

Corresponding state principles20 have been also developed for
correlating the surface tension data of pure compounds.4,19�27

For instance, Brock and Bird19 applied the reduced temperature,
the Riedel28 parameter at the critical point, critical temperature,
and critical pressure to correlate the surface tension experimental
data for nonpolar liquids. This correlation also results in high
AAD (14 %) from the same experimental surface tension values,
upon which the Macleod’s correlation4 was tested. Another
attempt has been made by Curl and Pitzer21 and Pitzer22 that
proposed critical temperature, pressure, and acentric factor (ω)
as the parameters of a correlation for calculation of the surface
tensions. The obtained results using this correlation show AAD
of 17 %.3

Two-reference corresponding states methods have been first
applied by Rice and Teja,24 who used critical temperature and
volume to derive a correlation, and later Zuo and Stenby,23 who
reported critical pressure and temperature to calculate surface
tensions. These equations do not lead to satisfactory results for
chemical compounds with strong hydrogen-bonding forces.3 To
overcome these shortcomings, Sastri and Rao25 evaluated the
surface tensions by a correlation based on critical pressure and
temperature, normal boiling point, reduced temperature, and
reduced boiling temperature. Their proposed correlation leads to
AAD (4%) in comparison with the surface tensions experimental
values of 30 pure compounds.3

Freita et al.26 proposed a different approach, in which a linear
solvation free energy relationship (LSER) on the basis of solute
parameters for the organic compounds has been applied for
estimation of the interfacial tensions of organic liquids. Apart
form that, Kavun and co-workers27 proposed a simple quantita-
tive regression equation using quantitative structure property
relationship (QSPR), the graph theory, and several techniques of
physical and theoretical organic chemistry to acceptably predict
the values of surface tension of liquid organic compounds from
various chemical families.

The most accurate equation for representation/prediction of
the surface tensions of pure liquids has been proposed by
Escobedo and Mansoori,4 who have derived an expression based
on statistical-mechanic and corresponding state principle. Their
results show AAD slightly higher than 1 % and around 2.6 % for
representation and prediction of surface tensions of 94 various

organic compounds, respectively.4 It should be pointed out that
for presenting a precise comparison among the described
methods, the same data sets should be applied to check their
accuracy, reliability and comprehensiveness.

However, there is still a need for presentation of more
comprehensive and accurate methods to determine surface
tensions of large group of chemical compounds containing
organic and inorganic liquids. In this communication, we pro-
pose a new approach based on the artificial neural network-group
contribution (ANN-GC) method to represent/predict the sur-
face tension of pure chemical compounds at different tempera-
tures and atmospheric pressure.

2. EXPERIMENTAL DATA AND MATHEMATICAL
METHODS

2.1. Experimental Data. The accuracy and reliability of
models for representation/prediction of physical properties,
especially those dealing with large number of experimental data,
directly depends on the quality and comprehensiveness of the
applied data set for its development.29 These characteristics of
such a model include both diversity in the investigated chemical
families and the number of pure compounds available in the data
set. In this work, we used DIPPR 801 database,30 which is one of
the best sources of physical property data for pure compounds
that generated based on 23000 scientific sources. The surface
tension values of 752 chemical species from various chemical
families at different temperatures (4672 data points) have been
considered for the calculation procedure. All of the data points
have been evaluated by the DIPPR 801 project30 for organic and
inorganic compounds. The references of the data can be found in
the Supporting Information.
2.2. Development of New Group Contributions. Having

defined the database, the chemical structures of all of the studied
compounds are analyzed with much attention using an algorithm
comparing the chemical groups to define the most efficient
contributions for evaluation of the surface tension. Conse-
quently, 151 functional groups have been found to be more
efficient for representation/prediction of the surface tensions of
pure compounds. The functional groups used in this study are
presented in Table 1. Moreover, the table of their numbers of
occurrences in the investigated compounds is presented as
Supporting Information. These chemical groups along with the
temperature are used as the proposed model parameters.
2.3. Optimization of Group Contributions using Artificial

Neural Network.The first calculation step and perhaps the most
significant one, is to search for a relationship between the
chemical functional groups and the desired physical properties.
The simplest method for this purpose is assumption of existence
of a multilinear relationship between these groups and the
desired property (here the surface tensions).31 This technique
is a similar method used in the most of classical group contribu-
tion methods.29 Several calculations show that application of the
mentioned methodology for the current problem brings about
poor results. Consequently, nonlinear mathematical method of
artificial neural network (ANN) is preferred and investigated.
ANN have been applied to various scientific and engineering
applications,29�66 e.g., calculations/estimations of physical and
chemical properties of different pure compounds,46�59,64,65 and
phase behavior predictions of complex semiclathrate systems.45

The theoretical explanations about neural networks have
been well presented before.65 Using the ANN toolbox of the
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Table 1. Functional Groups Used to Develop the Model*
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Table 1. Continued
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Table 1. Continued
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Table 1. Continued
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Table 1. Continued
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*R represents any group linked through carbon. X represents any electronegative atom (O, N, S, P, Se, halogens). Al and Ar represent aliphatic and
aromatic groups, respectively. =Represents a double bond. #Represents a triple bond. --Represents an aromatic bond as in benzene or delocalized bonds
such as the N�O bond in a nitro group. .Represents aromatic single bonds as the C�N bond in pyrrole. aThe superscript represents the formal
oxidation number.

Table 1. Continued
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MATLAB software (Mathworks Inc.), a three layer feed forward
artificial neural network (FFANN) has been developed for the
problem. The typical structure of a three layer FFANN is
schematically presented in Figure 1. The capabilities of this kind
of ANNs have been shown elsewhere.29�66

All of the functional groups and also the properties values of
pure compounds are normalized between�1 andþ1 to decrease
computational errors. This can be performed using maximum
and minimum values of each functional group for input data and
using maximum and minimum values of surface tensions for
output parameters. Due to the fact that we are faced with a large
range of surface tension values for different compounds, these
values are generally normalized between �1 and þ1 to prevent
truncation errors. In addition, this procedure, which is done in
optimization process, is performed to obtain the parameters of
the neural networks (W1, W2, b1, and b2 as shown in Figure 1),
and it has no effects on the model results. Later, these values are
again changed to the original surface tension values, which
are finally used as the inputs and reported as outputs of the
developed model. In the next step, the database is divided into
three subdata sets including the “Training” set, the “Validation”
set, and the “Test” set. In this work, the “Training” set is used
to generate the ANN structure, the “Validation (optimization)”
set is applied for optimization of the model, and the “Test
(prediction)” set is used to investigate the prediction capability
and validity of the obtained model. The process of division of
database into three subdata sets is performed randomly. For this
purpose, about 80 %, 10 %, and 10 % of the main data set are
randomly selected for the “Training” set (about 3738 surface
tension data), the “Validation” set (467 surface tension data),
and the “Test” set (467 surface tension data). The effect
of the percent allocation of the three subdata sets from the
database on the accuracy of the ANN model has been studied
elsewhere.66

Developing an ANN method is determination of the weight
matrices and bias vectors.26 As shown in the Figure 1, there
are two weight matrices and two bias vectors in a three layer
FFANN: W1 and W2 and b1 and b2.

29�66 These parameters
should be obtained byminimization of an objective function. The
objective function used in this study is sum of squares of errors
between the outputs of the ANN (represented/predicted prop-
erties) and the target values (experimental surface tensions).
This minimization is performed by Levenberg�Marquardt
(LM)62 optimization strategy. There are also more accurate
optimization methods other than this algorithm; however, they
need much more convergence time. In other words, the more
accurate optimization, the more time is needed for the algorithm
to converge to the global optimum. The LM65 is most-widely
used.29�66

In most cases, the number of neurons in the hidden layer (n) is
fixed. Therefore, the main goal is to produce an ANN model,

which is capable of predicting the target values as accurately as
possible. This step is repeated until the best ANN is obtained.
Generally and especially in three-layer FFANNs, it is more
efficient that the number of neurons in the hidden layer
is optimized according to the accuracy of the obtained
FFANN.29�66

3. RESULTS AND DISCUSSION

An optimized FFANN was obtained using the previously
described procedure for representation/prediction of the surface
tensions of 752 compounds at various temperatures and atmo-
spheric pressure. For this purpose, several 3FFANNs modules
were generated assuming numbers 1 through 50 for n (number of
neurons in hidden layer) using the previously described proce-
dure. Themost accurate results were observed at n = 10. It should

Figure 1. Schematic structure of the three-layer FFANN used in this
study. W, weight; b, bias.

Figure 2. (a) Comparison between the represented/predicted results
of the developed model and experimental values30 of surface tensions,
which are lower than those of water. (ST: surface tension of chemical
compounds, N/m; D: deviation from experimental values = (STrep/pred

� STexp); rep: representation; pred: prediction; exp: experimental; Δ:
training set,0: validation set,O: test set.) (b) Comparison between the
represented/predicted results of the developed model and experimental
values30 of surface tensions, which are higher than those of water. (ST:
surface tension of chemical compounds, N/m; D: deviation from
experimental values = (STrep/pred � STexp); rep: representation; pred:
prediction; exp: experimental; Δ: training set, 0: validation set, O: test
set.)
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be noted that this value is not the global value, because the
optimization method used to train the ANN has great effects on
the obtained value.29�61 Therefore, the developed three-layer
FFANN has the structure of 152-10-1 (temperature þ151
chemical groups are regarded as the inputs of the algorithm).
For every molecule, only few chemical groups are present and
consequently used. To the best of our knowledge, there has been
no temperature-dependent ANN-GC model for evaluation of
physical properties of pure compounds in literature.

The mat file (MATLAB file format) of the obtained ANN
containing all the parameters of the model (weight matrices and
bias vectors) and the instruction for running the program is freely
available upon request to the authors. The represented/pre-
dicted surface tensions are shown in Figure 2a,b in comparison
with the experimental values.30 We have splitted the data into
two categories: 1. The surface tensions form the lowest value to
that of 0.08 N/m, which is the surface tension of water; 2. Higher
surface tension values than that of water. This splitting leads to
show the capability of the proposed model for representation/
prediction of the surface tensions of the compounds with very
low surface tension values at atmospheric pressure and different
temperatures, which have been under debate regarding the to
date presented methods.1�26 The statistical results obtained by
the ANN-GC model are reported in Table 2. As can be seen, the
squared correlation coefficients, absolute average deviations, and
standard deviation errors of the model over the “Training” set,
the “Validation (Optimization)” set, the “Test (Prediction)” set,
and the main data set are 0.997, 0.992, 0.995, and 0.997; 1.7 %,

Table 2. Statistical Parameters of the Presented Modela

statistical parameter value

Training Set The Model
R2 0.997

Absolute average deviation b 1.7 %

Standard deviation error 0.02

Mean square error 0.0

N c 3738

Validation Set
R2 0.992

Absolute average deviation 1.7 %

Standard deviation error 0.01

Mean square error 0.0

N 467

Test Set
R2 0.995

Absolute average deviation 1.7 %

Standard deviation error 0.01

Mean square error 0.0

N 467

Training þ Validation þ Test Set
R2 0.997

Absolute average deviation 1.7 %

Standard deviation error 0.02

Mean square error 0.0

N 4672
a R2: Squared correlation coefficient. bAAD % = 100/N∑i

N(|Rep(i)/
Pred(i) � Exp(i)/Exp(i)|). cNumber of data points.

Table 3. Average Absolute Deviations of the Obtained Re-
sults from Experimental Values30 of Various Chemical
Families

no. family AAD %

1 1-alkenes 1.0

2 2,3,4-alkenes 0.5

3 acetates 1.9

4 aldehydes 0.7

5 aliphatic ethers 2.3

6 alkylcyclohexanes 0.8

7 alkylcyclopentanes 1.7

8 alkynes 0.8

9 anhydrides 0.2

10 aromatic alcohols 1.8

11 aromatic amines 0.9

12 aromatic carboxylic acids 1.4

13 aromatic chlorides 1.6

14 aromatic esters 1.2

15 C, H, Br compounds 0.5

16 C, H, F compounds 1.7

17 C, H, I compounds 0.5

18 C, H, multihalogen compounds 1.0

19 C, H, NO2 compounds 0.9

20 C1/C2 aliphatic chlorides 0.9

21 C3 and higher aliphatic chlorides 1.0

22 cycloaliphatic alcohols 2.5

23 cycloalkanes 2.4

24 cycloalkenes 1.0

25 dialkenes 0.4

26 dimethylalkanes 1.5

27 diphenyl/polyaromatics 3.9

28 elements 5.9

29 epoxides 0.4

30 ethyl and higher alkenes 1.5

31 formates 1.2

32 inorganic acids 1.7

33 inorganic gases 2.8

34 inorganic halides 9.2

35 ketones 1.0

36 mercaptans 1.1

37 methylalkanes 3.1

38 methylalkenes 1.3

39 multiring cycloalkanes 3.9

40 N-alcohols 1.0

41 N-aliphatic acids 0.9

42 N-aliphatic primary amines 1.6

43 N-alkanes 2.3

44 N-alkylbenzenes 0.8

45 naphthalenes 2.0

46 nitriles 0.6

47 nitroamines 7.7

48 organic salts 0.5

49 organic/inorganic compounds 0.2

50 other aliphatic acids 1.5

51 other aliphatic alcohols 1.3

52 other aliphatic amines 1.0
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1.7 %, 1.7 %, and 1.7 %; and 0.02, 0.01, 0.01, and 0.02, res-
pectively. Furthermore, the absolute average deviations of the
results from experimental values30 for each 78 chemical families
are reported in Table 3. The results imply that the obtained
ANN-GC model is accurate to represent/predict the surface
tensions of the investigated pure compounds from various
chemical families at different temperatures. For better illustration
of the pure compounds investigated in this study, their chemical
structures are sketched in the Supporting Information.

To omit from our discussion that there are 105 data points
(from 4672 available data points) for which the presented model
results lead to more than 10 % absolute deviations from experi-
mental values,30 would be an oversight. It seems that there is no
relation between these compounds structures to show some
weaknesses in representing/predicting of the surface tension
values of related chemical families. Moreover, the highest devia-
tions (more than 40 %) are from the same data source (refer to
the Supporting Information). Therefore, it is probable that the
surface tension values for these compounds are not accurate or
may be somehow erroneous because of the existed difficulties and
possible errors in experimental measurements. It should be noted
that the proposed method has been developed based of all of the
available data including the aforementioned 105 data points.

4. CONCLUSION

In this work, a group contribution-based model was presented
for representation/prediction of the surface tensions of pure
compounds (containing organic and inorganic liquids) at differ-
ent temperatures (temperature dependent ANN-GC model)

and atmospheric pressure. The model is the result of combina-
tion of feed forward neural networks and group contributions.
The required parameters of the model are temperature and the
numbers of occurrences of 151 functional groups in each
investigated molecule. It should be noted that most of these
functional groups are not simultaneously available in a particular
molecule. Therefore, computation of the required parameters
from chemical structure of any molecule is simple. For develop-
ing the model, the experimental surface tension values from the
largest available data set30 containing 752 pure compounds from
various chemical families and at different temperatures (totally
4672) data points were applied. As a consequence, a reliable,
comprehensive, and predictive tool was developed to represent/
predict the surface tensions of many of pure compounds, which
are especially applied in chemical and petroleum industries.
However, one point should not be omitted form our conclusion:
The model has a wide range of applicability but the prediction
capability of the model is restricted to the compounds, which are
similar to those ones applied to develop the model. Application
of the model for the totally different compounds than the
investigated ones is not recommended although it may be used
for a rough estimation of the surface tensions of these kinds of
compounds.
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